If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+7w=15
We move all terms to the left:
2w^2+7w-(15)=0
a = 2; b = 7; c = -15;
Δ = b2-4ac
Δ = 72-4·2·(-15)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*2}=\frac{-20}{4} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*2}=\frac{6}{4} =1+1/2 $
| 2/8=10/v | | (a-70)÷9=13 | | 4x+15=10x-28 | | (10+13)=(2+7y) | | 5=17-h | | 50/40=20/x | | 3w+5-2w=-7 | | 6x-10=-2(x+5) | | 5(n+7)=2(n+14) | | -4-7m=-9m+8 | | 3+q/5=10 | | h-17=5 | | -6z=-5-7z | | -90=-18k | | 8-(2q-6)+5q=2(3q-1)+10 | | 50/40=x/20 | | 35=1/2h(4+3) | | 8-6x=4x+1-5x | | 10x-18=8x+36 | | 4x+2=6x-20 | | 3x-1/5=0,8 | | 10+16=6x+20 | | -4x=6(8+x) | | 3(-2y+4)=-2(3y-6) | | 5x+9=6x-2x+3 | | -1.2(3x-3)=(3x+0.9) | | 10x-18=8x+32 | | x-0.15x=233.75 | | 19g−17g=18 | | -5-6x-6=13 | | 4x-1=-4x+15 | | 40=4x+7x-4 |